

Senior Design Project I and Professionalism Fall 2024 **Pressure Sensor Patch**

sdmay25-12

Team Members:

Osaid Samman Ivan Alvarado-Santoy Sabrina Francis Zane Lenz Bilal Hodzic Aina Qistina Binti Azman Nathan Turnis

Advisors:

Santosh Pandey, Rachel Shannon, Nick Fila

Client:

Adaptive Adventures & BAE Systems

BAE SYSTEMS

Overview

Project Requirements

Project Plans

Design

Implementation

Conclusion

Overview

- People with disabilities need special equipment to participate in sports
- Modern technology allows disabled individuals to safely participate in physical activities
- Even with existing equipments, challenges still exist

Problem Statement

- People with lower extremity damage or related disabilities may not sense incorrect sitting posture.
- Prolonged incorrect posture can cause pressure sores on the sit bones.
- Severe pressure sores can lead to life-changing consequences or even be fatal.

Intended Users

Athletes with Adaptive Equipment

Caregivers/Coaches for Adaptive Sports Athletes

Medical Practitioners and Healthcare Providers

Requirements

- Detects high pressure levels
- Threshold-based alerts
- Comfortable to sit on
- Easy to use
- Multipurpose

Project Plan

- Predetermined project timeline
- Hybrid Agile and Waterfall project management

Design - Hardware

- Load Cells
- Combinator
- Amplifier
- Microcontroller

• Battery

Design - Application

- Communicates with hardware
- Basic features like login and signup
- Graphs for monitoring pressure
- Streaming algorithms used to actively check for

pressure imbalance

Design - Concerns

- No universal seat exists
- Device must adapt to many scenarios
- Device must be hard surface

Current Prototype - Hardware

Current Prototype - Application

≡	PressureSense	
Disco	nnected	
Cont	nect	
Values		
🔵 Data		
350.0		
262.5		
175.0		
87.5		
0.0		

≡ PressureSense 9	
Disconnected	
Values	
Connection Failed	
Dismiss	l
87.5	l
0.0	

Evaluation of the Proposed Design

Implications & Future Work

Hardware Refinement

- Work on the 1. physical pressure device design.
- Further calibrate 2. the sensors.
- Determine battery 3. capacity

Software Optimization

- Design the alert 1. algorithm to send notifications.
- Expand the app's 2. features

Comprehensive Testing

- Conduct more testings.
- Gather feedback 2. from intended users.

Conclusion

- Successfully created a pressure sensing device that communicates wirelessly with an Android application to display real-time data.
- Achieved two out of three goals:

- 1. Developed functional hardware.
- Displayed weight distribution visually in real time.

- Data analysis for real-time imbalance alerts.
- Hardware Refinement.
- \circ Testings.

Remaining Work:

Thank you

Team Website: https://sdmay25-12.sd.ece.iastate.edu

IOWA STATE UNIVERSITY

Team Email: sdmay25-12@iastate.edu